Simultaneous Bifurcation of Limit Cycles and Critical Periods
نویسندگان
چکیده
Abstract The present work introduces the problem of simultaneous bifurcation limit cycles and critical periods for a system polynomial differential equations in plane. simultaneity concept is defined, as well idea bi-weakness return map period function. Together with classical methods, we an approach which uses Lie bracket to address some cases. This used find cubic quartic Liénard systems, general quadratic family, linear plus homogeneous family. We finish illustrative example by solving
منابع مشابه
Bifurcation of Limit Cycles via Averaging Theory
We study the bifurcation of limit cycles from the periodic orbits of a four-dimensional center in a class of piecewise linear differential systems. Our main result shows that three is an upper bound for the number of limit cycles that bifurcate from a center, up to first order expansion of the displacement function. Moreover, this upper bound is reached. The main technique used is the Averaging...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملSimultaneous Bifurcation of Limit Cycles from a Linear Center with Extra Singular Points
The period annuli of the planar vector field x′ = −yF (x, y), y′ = xF (x, y), where the set {F (x, y) = 0} consists of k different isolated points, is defined by k + 1 concentric annuli. In this paper we perturb it with polynomials of degree n and we study how many limit cycles bifurcate, up to a first order analysis, from all the period annuli simultaneously in terms of k and n. Additionally, ...
متن کاملAlgebraic Analysis of Bifurcation and Limit Cycles for Biological Systems
In this paper, we show how to analyze bifurcation and limit cycles for biological systems by using an algebraic approach based on triangular decomposition, Gröbner bases, discriminant varieties, real solution classification, and quantifier elimination by partial CAD. The analysis of bifurcation and limit cycles for a concrete two-dimensional system, the self-assembling micelle system with chemi...
متن کاملBifurcation of Limit Cycles from Quartic Isochronous Systems
This article concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quartic homogeneous perturbations, at most two limit cycles bifurcate from the period annulus of the considered system, and this upper bound can be reached. In addition, we study a family of perturbed isochronous systems and prove th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Qualitative Theory of Dynamical Systems
سال: 2021
ISSN: ['1575-5460', '1662-3592']
DOI: https://doi.org/10.1007/s12346-021-00546-x